
Chapter 3

Clustering Microarray Data

The potential of clustering to reveal biologically meaningful patterns in microarray

data was quickly realised and demonstrated in an early paper by Eisen et al. (1998),

who used hierarchical clustering to identify functional groups of genes. As discussed

in Chapter 2, hierarchical clustering is one of many conventional clustering methods

that could be applied to microarray data and details of such methods may be found

elsewhere (see Everitt et al., 2001, for a general introduction to cluster analysis).

Whilst standard techniques can be effective in clustering microarray data, there

are a number of common assumptions made by conventional methods that do not

accommodate some of the features of gene expression.

Partitioning methods assume that each subject belongs to one group. This may

not be appropriate for clustering genes, since genes can be involved in more than

one active biological process or not be involved in any of the active processes. In

the first case the underlying grouping structure may overlap and in the second case

the grouping structure may not be exhaustive. Hierarchical clustering may be used

to represent subgroups, but can not represent a partial overlap between groups as

may be required. Redundant clusters may be avoided by filtering out genes with

near-constant expression profiles, but such gene selection usually results in a large

proportion of the data being thrown away on the basis of some ad hoc criteria. It

is preferable to base an analysis on all of the data, using a clustering method that

leaves genes with “uninteresting” patterns unclustered.

Conventional one-way clustering methods are based on similarity between sub-

jects across all variables. However genes may be co-regulated under limited condi-

tions and show little similarity outside these conditions. In this case, a group of
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genes may be represented by a gene cluster and an associated subset of the samples

which distinguishes the cluster. If the samples in the data set were taken over time,

then gene clusters should be based on all the samples, but it may be more appro-

priate to use a clustering method that is designed for clustering time series, which

clusters genes on the basis of key features of their expression profiles.

Assumptions of conventional clustering methods such as those described above

may also be too restrictive for sample clustering. For example, if the samples repre-

sent patients diagnosed with a certain disease, it may not be appropriate to require

every sample to belong to a cluster, as this does not allow for misdiagnosis.

Such limitations of standard clustering techniques have motivated considerable

research, leading to the development of several new methods for clustering microar-

ray data. This chapter reviews some of these methods, paying particular attention

to the extent to which they address the issues described above. The clustering meth-

ods will be compared according to the structure of the clusterings they produce; the

nature of clusters they identify, and the search strategy they employ to find these

clusters.

The review is divided into three sections: one-way clustering, two-way clustering

and biclustering. One-way clustering methods may be used to find either gene

clusters or sample clusters. Two-way clustering methods may be used to find both

gene clusters and sample clusters in a combined approach. Biclustering methods

may be used to find two-dimensional clusters, that is, gene clusters that are only

defined over an associated sample cluster that is found simultaneously.

These categories are ordered by a general increase in flexibility of clustering

structure. The classification also contrasts methods in the first two categories with

methods in the third, from which the plaid model is selected for investigation in the

remainder of this thesis.

3.1 One-way Clustering

There are several one-way clustering methods that have been designed for the analy-

sis of microarray data, usually motivated by the search for grouping structure in the

genes. These methods will be described with reference to two keys: the first, in Fig-

ure 3.1, illustrates different clustering structures that one-way clustering methods

may produce and Figure 3.2 illustrates different types of cluster.
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(a) Partition (b) Partition obtained from hierarchy

(c) Overlapping non-exhaustive clusters (d) Context-specific clusters

Figure 3.1
One-way clustering structures. The images represent a gene by sample expression matrix
in which the genes have been clustered into six clusters, identified by the different colours.
Chequered blocks represent overlapping clusters.

Certain one-way clustering techniques allow for genes that are involved in mul-

tiple active processes, as well as genes that are not involved in any active process,

by isolating possibly overlapping clusters from the data as in Figure 3.1(c). Per-

colation clustering, introduced by Šášik et al. (2001) is one such method, in which

clusters are built up by connecting neighbouring points or clusters in a way that is

similar to agglomerative hierarchical clustering, except that connections are made

on a probabilistic basis and the clustering is repeated several times to produce an

“average tree”. This tree is used to filter out “uninteresting” clusters and the prob-

ability of membership to the remaining clusters is then calculated for each gene.
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(a) Common expression profiles

(b) Mirrored expression profiles (c) Common change in expression over
samples

Figure 3.2
Types of one-way cluster. The images represent the (noiseless) expression levels of a cluster
of twenty genes from a data set with eight samples.

Due to the probabilistic approach taken, the method is not greedy like ordinary

hierarchical clustering, but more Monte-Carlo like. Since the clustering is based on

a distance measure, genes in a cluster have a common profile as in Figure 3.2(a),

but “uninteresting” clusters are filtered out on the basis of a minimum size.

Rather than simply looking for similar genes, the gene shaving approach of Hastie

et al. (2000) searches for coherent clusters with high between-sample variance, ig-

noring genes involved in constantly activated processes as well as those involved in

none of the active processes. The gene shaving algorithm finds a series of nested

clusters on the basis of correlation with the leading principal component, such that

each nested cluster has the maximum variance of the cluster mean, given the cluster

size. The nested cluster with the largest difference between its R2 value and its

expected R2 value is selected for the final result. Once a cluster has been selected,

the data is orthogonalised with respect to the cluster centroid in order to search

for a further cluster. Clusters are sought until a pre-specified number of clusters is
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reached. The gene shaving approach is underpinned by the following model for the

gene expression level, Yij, i = 1, . . . , n; j = 1, . . . , p of the ith gene in the jth sample

Yij =
K

∑

k=1

ρikejk + ǫij

where ρik ∈ {0, 1} indicates whether the ith gene is in the kth cluster, such that
∑K

k=1 ρik > 0; ejk is the jth element of the kth eigenvector, and ǫij ∼ N(0, σ2) is

the error. Gene shaving clusters usually cover a small proportion of the data and

as they are found independently, may overlap, giving the structure of Figure 3.1(c).

In addition, correlation can be positive or negative, so clusters can include profiles

of opposite sign as in Figure 3.2(b).

Other one-way clustering methods allow clusters to be based on a subset of the

attributes. Friedman and Meulman (2004) use this approach in the context of clus-

tering samples, allowing for the situation where only a small proportion of the genes

are useful in distinguishing a particular cluster. This type of cluster may be difficult

to uncover by giving equal weight to all the genes. Their procedure, Clustering Ob-

jects on Subsets of Attributes (COSA) computes distances between samples, giving

the expression levels gene- and sample-specific weights. These distances are then

passed to a distance-based clustering algorithm, such as hierarchical clustering, to

cluster the samples. This will identify clusters characterised by a common profile

as illustrated (for a gene cluster) in Figure 3.2(a) . The structure of the clustering

will depend on the method used, for example, hierarchical clustering would give a

structure as illustrated (for gene clustering) in Figure 3.1(b). Thus the form and

structure of the clusters is conventional, but the importance of each gene in the

discovery of a sample cluster can be quantified and relevant genes can be isolated.

Barash and Friedman (2002) propose a context-specific Bayesian clustering tech-

nique in which an explicit subset of relevant attributes is determined for each cluster,

as illustrated in Figure 3.1(d). They focus on clustering genes, but also demonstrate

their method on clustering samples. Expression data may be analysed in conjunc-

tion with other sources of data, so that attributes such as the occurrence of putative

binding sites in the promoter region of the genes can also be included. The cluster-

ing is exhaustive so may not be suitable for clustering full sets of genes, but clusters

may overlap and the number of clusters is determined automatically. The clusters
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are estimated using a structural EM algorithm, based on the probabilistic model

P (Y1, . . . , Yp|G) =
(

∏

j /∈G

P (Yj)
)

K
∑

k

(

P (C = k)
∏

j∈G

P (Yj|C = k)
)

where the Yj are attributes, G is the union of all relevant attributes, C is the cluster

variable and

P (Yj|C = k) =







P (Yj|C = kl) if k = kl ∈ Lj

P (Yj) otherwise

in which Lj is the group of clusters for which attribute Yj is relevant. An attribute

will be relevant to a cluster if the clustered objects have unusual values for that

attribute. The (conditional) probability distributions of continuous attributes, such

as the expression level on a particular array, are modelled as Gaussian. For discrete

attributes, multinomial distributions are used. Therefore clustered genes will have

a common expression profile, as shown for a gene cluster in Figure 3.2(a).

Several methods have been proposed for clustering gene expression time series.

They differ from other methods by using the actual time values to model the gene

expression profiles. In this way dependencies between time points are accounted

for, which is particularly important when the sampling rate is not uniform. Ramoni

et al. (2002) use a clustering model in which the temporal profiles are represented

by autoregressive (AR) equations. In this model, Yij the expression level of gene i

in sample j, is given by

Yij =
K

∑

k=1

ρik(βik0 + Yi(j−1)βik1 + . . . + Yi(j−p)βikp) + ǫijk

where ρik ∈ {0, 1} indicates whether gene i is in cluster k, such that
∑K

k=1 ρik > 0;

the βbik are regression coefficients; p is the order of the model, and the ǫijk ∼ N(0, σ2
k)

model the error. This model is estimated using a Bayesian agglomerative hierar-

chical method, which seeks the model with maximum posterior probability at each

stage and stops when it has found a set of clusters that cannot be merged without

reducing the marginal likelihood. This gives a partition of the data with associated

hierarchical relationships within each cluster as illustrated in Figure 3.1(b). The

autoregressive model suggests that expression levels of profiles in the same cluster
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change over time in a similar way, but the actual expression levels need not be the

same. This type of cluster is illustrated by Figure 3.2(c). The disadvantages of the

approach of Ramoni et al. (2002) are that the final clusters can be greatly affected

by small errors made early on and that AR models have several limitations, for

example in the interpretation of the coefficients when time points are not evenly

spaced (Luan and Li, 2003).

More flexibility is given by using spline models of the form

Yij =

K
∑

k=1

ρik

(

p
∑

l=1

βklSl(tij) +

q
∑

l=1

γilS̄l(tij)
)

+ ǫijk

where ρik ∈ {0, 1} indicates whether the ith gene is in the kth cluster, , such that
∑K

k=1 ρik > 0; the βkl are coefficients of the spline basis S̄ for the kth cluster; the γil

are normal random coefficients of the spline basis S with mean zero and covariance

matrix Cov(γi) = Γk, and ǫijk ∼ N(0, σ2 is residual error. This model represents a

standard partition of the data, as in Figure 3.1(a). The inclusion of random gene

effect curves implies that clustered profiles have the same pattern of expression,

as in Figure 3.2(c), not necessarily similar expression levels, though the degree of

similarity will depend on the covariance matrix Γk.

The clustering method of Bar-Joseph et al. (2002) is based on this spline model,

using the same cubic spline basis vector to model the fixed cluster effect curve and the

random gene effect curve. Their clustering algorithm finds a pre-specified number

of clusters and the probabilities for each gene of belonging to each cluster. They use

an EM algorithm, which alternates between updating the membership probabilities

and updating the parameters of the expression profile models. Luan and Li (2003)

propose a similar approach, using different B-spline bases for the fixed and random

effect curves. To avoid too many parameters in the model they assume a common

covariance matrix for the γi across clusters. They also consider determining the

number of clusters and allowing for genes that don’t belong to any cluster.

Heard et al. (to appear) use a spline model without a random gene effect curve, so

clustered profiles have a common expression profile as in Figure 3.2(a). They choose

to use a truncated power spline basis to model the cluster profiles. By adopting

conjugate priors on the coefficients of the regression splines they obtain an analyti-

cal expression for the marginal likelihood, which they then seek to optimise through
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agglomerative hierarchical clustering. The number of clusters that maximises the

posterior distribution is selected for the final result, giving a partition with an as-

sociated hierarchy as in Figure 3.1(b). Thus the method of optimisation and the

structure of the clustering is similar to the method of Ramoni et al. (2002), but

the underlying model is more flexible, in particular it allows for non-stationary time

series.

Finally Wakefield et al. (2003) consider the generic time series model

Yij =
K

∑

k=1

ρikf(θk, tij) + ǫijk

in which ρik ∈ {0, 1} indicates whether gene i is in cluster k, such that
∑K

k=1 ρik > 0,

and f is a function of time with parameters θk that depends on the experimental

context. For example, for periodic data, they propose the random effects model

Yij =

K
∑

k=1

ρik(Aik sin(ωtij) + Bik cos(ωtij)) + ǫijk

where the Aik and Bik are assumed to be bivariate normal and ω is fixed on the

basis of prior knowledge of the period. Priors for the distribution of Aik, Bik are also

determined from the data and then the clustering model is estimated using MCMC.

The result is a standard partition of the data as in Figure 3.1(a) in which clustered

profiles have a common expression profile as illustrated in Figure 3.2(a).

3.2 Two-way Clustering

A simple way to cluster both genes and samples is to apply a one-way clustering

method to each dimension and then to relate the two analyses with the aid of an

ordered plot of expression values (see e.g. Alon et al., 1999; Alizadeh et al., 2000).

However if there are relationships between gene and sample clusters, it may be more

appropriate to use a method in which the clustering of one dimension is dependent

on the clustering of the other. This form of clustering is what is meant by two-way

clustering here.

Generic two-way clustering techniques obtain two-way clusters by applying a

one-way clustering method in a sequential manner. Such methods will be considered
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first, before reviewing simultaneous two-way clustering methods in Section 3.2.1. A

diagrammatic guide to generic two-way clustering techniques techniques is given in

Figure 3.3. For these methods the type of clusters obtained will not usually be

described since it will depend on the one-way clustering method used. However

where a particular method is described reference will be made to Figure 3.4 which

gives a key to types of two-way cluster.

Two-way clustering may be used to identify a subset in one dimension that is

useful for clustering the other dimension. This is the idea behind the interrelated

two-way clustering method of Tang et al. (2001). In this method, the genes are

clustered and each gene cluster is used to cluster the samples, as illustrated in

Figure 3.3(a). The results of the different sample clusterings are used to filter out

“irrelevant” genes. The reduced gene set is then used to initiate another iteration of

gene and sample clustering and the process is repeated until the sample clusterings

reach a certain level of similarity or the number of genes reaches a pre-specified

threshold. At this point the remaining genes are used to find a final set of sample

clusters. The process of reducing the gene set assumes that each iteration partitions

the genes into a fixed number of clusters, say k, and each sample clustering is a

partition into a fixed number of clusters, say l. Therefore the method used to cluster

the genes and the samples can be any one-way partitioning method for which the

number of clusters can be specified, e.g. k-means or self-organising maps (SOM).

The interrelated two-way clustering method assumes that there is only one mean-

ingful or interesting way to cluster the samples and all gene clusters should be related

to this sample grouping. However it may be that different gene clusters reveal differ-

ent ways of grouping the samples. McLachlan et al. (2002) suggest first clustering

the genes; ranking the gene clusters by their potential for clustering the samples

and then using selected gene clusters to cluster the samples, as illustrated in Fig-

ure 3.3(b). To cluster the genes, McLachlan et al. (2002) consider the p-vector of

expression levels for gene to be a realisation of the random vector Y with mixture

probability density function

f(y; πk, µk, Σk) =
K

∑

k=1

πkφ(y; µk, Σk)

where φ(y; µk, Σk) is the p-variate normal density probability function with mean
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(a) Gene clustering → sample clustering
within gene clusters

(b) Gene clustering → sample clustering
within selected gene clusters

(c) Gene clustering → sample clustering
within gene clusters → gene clustering
within sample clusters

(d) Gene and sample clustering → gene and
sample clustering within submatrices
defined by all pairs of gene and sample
clusters from previous iteration

Figure 3.3
Diagrammatic representation of generic two-way clustering techniques, assuming a one-
way partitioning method is used to cluster the genes and samples as described.
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µk and covariance matrix Σk, and the πk are the mixing proportions. On the basis

of this model the genes are partitioned into K clusters, giving the type of structure

shown in Figure 3.1(a). To cluster the samples, McLachlan et al. (2002) propose

a mixture of factor analyzers, since the number of genes is typically much greater

than the number of samples. This model is similar to the normal mixture model,

except that the covariance matrix is given by

Σk = BkB
T
k + Dk

where Bk is a matrix of factor loadings and Dk is a diagonal matrix. McLachlan et al.

(2002) fit the normal mixture model and the factor analyzers mixture model by maxi-

mum likelihood estimation using EM algorithms; the factor analyzers mixture model

requiring a variant of the EM algorithm called Alternating Expectation-Conditional

Maximisation (AECM). Either mixture model will produce clusters characterised

by a common expression profile, as illustrated in Figure 3.4(c).

The concept of clustering samples within gene clusters is included in the general

framework proposed by Pollard and van der Laan (2002), in which a “simultaneous”

clustering function is defined as a composition of gene and sample clustering func-

tions. This produces a hierarchical clustering method in which one-way clustering

is performed within (possibly two-way) clusters from the previous stage. Examples

of such simultaneous clustering methods are illustrated by Figure 3.3(a) (gene clus-

tering followed by sample clustering) and Figure 3.3(c) (gene clustering followed by

sample clustering followed by gene clustering).

Getz et al. (2000) propose a related procedure, Coupled Two-Way Clustering

(CTWC), in which a one-way clustering method is applied to both genes and samples

within submatrices defined by gene and sample clusters from previous iterations.

In this case however, the clustering is not strictly hierarchical. The submatrices

considered are all possible pairs of gene and sample clusters, including both the full

set of genes and the full set of samples, as illustrated (for two iterations) in Figure

3.3(d). The process is terminated when all of the clusters found in an iteration

fail to meet pre-specified criteria (which may be with respect to size or stability

for example). Clusters obtained at any stage of the process that pass a stability

criterion are selected for the final set of clusters. CTWC can be used with any one-

way clustering method, the choice of which will determine the nature of the clusters
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(a) Constant expression level (b) Common response profile

(c) Common expression profile (d) Conserved response

(e) Common change in expression over genes
and over samples

(f) Common change in response over genes
and over samples

Figure 3.4
Types of two-way cluster. The images represent the (noiseless) expression levels of a two-
way cluster of twenty genes and eight samples. Unless otherwise specified, the patterns are
described in terms of the gene expression profiles. A “response” is defined an up-regulation
or down-regulation, i.e. a non-zero expression level.

discovered.

Methods that iteratively cluster genes and samples have the potential to reveal

local correlations as shown in the use of CTWC by Getz et al. (2003), but with

many iterations there is a danger that the search will become too aggressive as the

analysis is based on smaller and smaller data sets (Pollard and van der Laan, 2002).
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(g) Mirrored expression profiles with different
scales

(h) Common rank expression profile

(i) Mirrored response profiles (j) Arbitrary response

Figure 3.4
Types of two-way cluster (contd.). The images represent the (noiseless) expression levels
of a two-way cluster of twenty genes and eight samples. The patterns are described in
terms of the gene expression profiles. A “response” is defined an up-regulation or down-
regulation, i.e. a non-zero expression level.

3.2.1 Co-clustering

Co-clustering is a form of two-way clustering in which both dimensions are clustered

simultaneously. The concept was introduced by Dhillon (2001) in the context of

document-keyword analysis and Kluger et al. (2003) proposed a similar method

for co-clustering gene expression data. Although Kluger et al. (2003) refer to their

method as spectral “biclustering”, it is differentiated from biclustering methods here,

as the clusters are dependent on the full expression profile of genes or samples, and

the clustering results in exhaustive, non-overlapping clusters.

In the method of Kluger et al. (2003), clustering is based on the singular vectors

of the row- and column-centred data. Pairs of left and right singular vectors that

are approximately piecewise constant indicate a block structure in the expression

levels of the original matrix, so the singular vectors are examined to find the best-

partitioning pair in this sense. These singular vectors indicate a partitioning of both

the genes and the samples, as well as an ordering of the genes and samples within
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Figure 3.5
Spectral biclustering structure and form. The coloured bars on the left side and the
top side of the plot represent the gene clusters and the sample clusters derived from the
best-partitioning left and right singular vectors respectively. The image plot represents
the values given by the inner product of these singular vectors, with corresponding block
structure.

these clusters according to the actual values of the eigenvectors. The inner product

of the best-partitioning singular vectors may be used to represent the block structure

in the original matrix, as illustrated in Figure 3.5. Further pairs of singular vectors

may be used to enhance the partitioning of either genes or samples, for example by

projecting the data into the space of the first two best-partitioning “eigengenes” and

clustering the data in that space, using a conventional clustering algorithm such as

k-means.

Other co-clustering methods have been proposed for the analysis of microarray

data, in which the type and structure of the co-clusters are not so closely interrelated.

These methods will be described with reference to the key to co-clustering structures

given by Figure 3.6 and the keys to cluster types given by Figures 3.2 and 3.4.

Cho et al. (2004) propose a co-clustering method which simultaneously partitions

the genes and the samples, so that the data is partitioned into a grid of co-clusters

as illustrated in Figure 3.6(a). They propose two alternative co-clustering models,

in which co-clusters are either modelled by their mean or a two-way additive model.

In the second case, the expression level Yij for the ith gene and the jth sample is

given by

Yij =
K

∑

k=1

ρikκjk(µk + αik + βjk) + ǫij
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(a) Two-way partition

(b) Conjugate gene and sample clusters

Figure 3.6
Co-clustering structures. The images represent a gene by sample expression matrix in
which six co-clusters are identified by six different colours.

where ρik ∈ {0, 1} indicates whether gene i is in cluster k, κjk ∈ {0, 1} indicates

whether sample j is in cluster k, and µk, αik and βjk are the mean, gene and sample

effects of cluster k respectively. The two-way partition is given by the constraints
∑

k κjk = l and
∑

k ρik = m, where l and m are the number of gene and sample par-

titions respectively. The mean-only model will identify blocks of similar expression

level as in Figure 3.4(a), whereas the two-way model will identify blocks of similar

expression pattern, as illustrated in Figure 3.4(e). The full co-clustering model is

estimated using an alternating least squares procedure. A disadvantage of the ap-

proach of Cho et al. (2004) is that the number of gene clusters and the number of

sample clusters must both be specified. However the modelling framework offers
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potential for extensions such as the inclusion of anti-correlated genes in clusters.

The co-clustering methods described so far partition the genes and samples.

As discussed earlier, it may be that some genes and samples are not particularly

informative and may be better left unclustered. The Double Conjugated Clustering

(DCC) method of Busygin et al. (2002), allows for this possibility. DCC alternates

between clustering genes and samples using a node-driven clustering method such as

SOM. After each iteration the nodes of the current clustering space are mapped to

conjugate nodes of the other clustering space. The end result is a set of gene clusters

and a conjugate set of sample clusters as illustrated in Figure 3.6(b). A gene cluster

is interpreted as those genes which can be used to distinguish the conjugate sample

cluster from the other samples. “Uninteresting” genes that do not discriminate

enough between the samples are clustered by nodes having no samples in the sample

clustering space and are therefore ignored (treated as unclustered). Sample clusters

may be interpreted in a similar way with respect to the genes. Although each

cluster has a conjugate in the opposite clustering space, the conjugate is not taken

as a subset of attributes on which the clustering is based, rather the full data set

is used in each clustering cycle. Thus the resultant clusters are one-way and are

characterised by a common expression profile as illustrated for a gene cluster in

Figure 3.2(a).

3.3 Biclustering

A bicluster is a cluster of the genes and an associated cluster of the samples over

which the genes are co-regulated. Biclustering does not seek to cluster all the genes

or all the samples; the aim is to identify possibly overlapping submatrices of the data

that exhibit interesting patterns - leaving the remaining data unclustered. Thus

biclustering may be viewed as an extension of context-specific one-way clustering.

It combines the features of iterative two-way clustering and co-clustering, in that

local dependencies can be discovered, but the analysis is based on the full expression

matrix and the genes and samples are clustered simultaneously.

Biclusters are of course a type of two-way cluster, so Figure 3.5 continues to

provide a reference for cluster type. A key to biclustering structures is given by

Figure 3.7.

Segal et al. (2001) use probabilistic relational models (PRMs) to model the de-
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(a) Biclusters dependent on latent gene and
array clusters as well as other attributes

(b) Clusters dependent on latent processes,
some of which are not active in all arrays

(c) Biclusters with no overlap
in gene membership

(d) Biclusters with no overlap
in sample membership

(e) Biclusters with
unrestricted membership

Figure 3.7
Biclustering structures. The images represent a gene by sample expression matrix in which
six clusters are identified by six different colours. Chequered blocks represent overlapping
clusters. In plot (a), latent clusters are represented in the sidebars by blocks of muted
colour.

pendency of expression levels on gene and array attributes, which may include gene

and array clusters. The dependencies are represented by a binary tree with con-

ditions on the attributes at the nodes and expression levels at the leaves. Thus a

bicluster may be represented by a leaf with the parents “Gene cluster = 3” and

“Sample cluster = 4”, for example. However the PRM may also identify one-way

clusters, that depend only on a gene cluster, say, or subsets of the data that are not
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aligned with the (latent) gene and array clusters since the expression levels depend

on the values of other variables, such as the functional annotation of the genes or the

presence of binding sites for certain transcription factors. An illustration of the type

of clustering that may be defined by such a PRM is shown in Figure 3.7(a). Since

each cluster is represented by a single expression level, clustered expression levels

will be similar in value, as illustrated for a bicluster in Figure 3.4(a). The structure

of the PRM and parameters of the associated conditional probability distributions

are estimated using a variant of the structural EM algorithm. The method of Segal

et al. (2001) is very flexible in the type of grouping that can be identified, but the

assumption of a latent clustering of the genes and arrays restricts the gene and array

clusters that can be used in the model.

Also using PRMs, Segal et al. (2003) propose an approach for identifying cellular

processes and the biclusters in which they are active. The approach is based on the

following probability model for the expression level Yij of the ith gene in the jth

sample

P (Yij) = exp

(

Yij −
∑K

k=1 ρikβjk

2σ2
j

)

in which ρik ∈ {0, 1} indicates whether gene i participates in process k, such that
∑K

k=1 ρik > 0; µjk is the activity level of process k in sample j, and σj is the standard

deviation of all expression measurements in sample j. The set of genes participating

in a given process may be viewed as a cluster. Since the activity of a process

is modelled separately for each sample, clusters are characterised by a common

expression profile, as illustrated in Figure 3.4(b). A bicluster may be represented

by a set of genes belonging to a process with zero activity in some samples. Thus

the PRM may represent a number of overlapping one-way clusters and biclusters, as

illustrated in Figure 3.7(b). Segal et al. (2003) use an EM algorithm to determine

which genes belong to each process and the activity level of each process in each

sample, for a given number of processes.

MacKay and Miskin (2001) use a similar clustering technique in which expression

levels are modelled by latent variables, which have different strengths for each gene

and sample. More specifically, the expression level Yij of the ith gene in the jth

sample is modelled as

Yij =

K
∑

k=1

αikβjk + ǫijk.
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where K is the number of latent variables; αik and βjk are the effects of latent

variable k on the expression levels of gene i and sample j respectively, and ǫijk is the

error. Thus the membership indicators ρik in the model of Segal et al. (2003) are

replaced by multiplicative gene effects, αik. Clusters are represented by processes

for which some of the αik and/or some of the βjk are (approximately) zero. The

clustering structure is therefore the same as that induced by the model of Segal et al.

(2003) (illustrated in Figure 3.7(b)), but the clustered expression profiles need only

be the same up to a multiplicative factor, as illustrated in Figure 3.4(g). MacKay

and Miskin (2001) use a variational approach to estimate this clustering model. A

drawback of this model is that it is designed for modelling untransformed expression

levels, rather than the commonly used log-transformed expression levels. For log-

transformed data, multiplicative gene effects may not be appropriate. A further

disadvantage of this method, and the related method of Segal et al. (2003), is that

they may have a tendency to produce “fuzzy biclusters”, which include genes and

samples that appear to have a weak involvement in a process.

Sheng et al. (2003) model the expression levels within a bicluster by a set of

multinomial distributions, one for each sample in the bicluster. Thus the biclus-

tered genes are assumed to share the same state of expression within each of the

samples, but this state of expression may differ across the samples, giving the type

of structure illustrated in Figure 3.4(c). In order to distinguish unusual distribu-

tions of expression levels, the background expression levels are modelled by a single

multinomial distribution. Biclusters are found one at a time using a Gibbs sampling

approach. Once genes are assigned to a bicluster they are masked from further

analysis, so genes can only belong to one bicluster. This leads to the type of the

biclustering structure illustrated in Figure 3.7(c). Since the expression levels are

modelled by multinomial distributions, the data must first be discretised to use

this method. Sheng et al. (2003) suggest dividing the data into three bins, which

may over-simplify the expression pattern and magnify the effect of noise on some

expression levels.

Tanay et al. (2002) introduced the Statistical Algorithmic Method for Bicluster

Analysis (SAMBA), in which the data are modelled as a bipartite graph whose two

parts correspond to the genes and the samples, with edges representing significant

changes in expression. Edges and non-edges are weighted by likelihood scores de-

rived from a probabilistic model for the bipartite graph. A bicluster is defined as a
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heavy subgraph, where the weight of a subgraph is the sum of the weights of the cor-

responding edges and non-edges. SAMBA identifies the most significant biclusters

under simplifying conditions, then searches for local improvements in a heuristic

manner. Working with an unsigned graph, the algorithm will produce biclusters

of genes that jointly respond to the conditions represented by the biclustered sam-

ples. The response may be up-regulation or down-regulation, and need not be the

same across the genes or across the samples, as illustrated in Figure 3.4(j). Such

biclusters may present difficulties for interpretation. Working with a signed graph,

the algorithm will produce biclusters in which every two conditions have either a

similar effect or the opposite effect on the biclustered genes, as illustrated in Figure

3.4(i). In either case, biclusters may overlap and need not cover the data matrix,

as illustrated in Figure 3.7(e). To use SAMBA, the expression levels must first be

converted to up-regulated (1), down-regulated (-1) or unchanged (0) levels, so this

method carries the disadvantages of discretisation described above. However, the

SAMBA algorithm is being developed to allow greater sensitivity using multiple

response levels (Tanay et al., 2002).

Order preserving submatrix clustering (Ben-Dor et al., 2002) defines a bicluster

as a cluster of genes with the same rank profile across the biclustered samples. In

some sense, this definition is quite broad, since the expression levels of the biclustered

profiles may be quite different and even the pattern of the biclustered profiles may

vary quite considerably, as illustrated in Figure 3.4(h). On the other hand, the

definition may be viewed as over-prescriptive, since it is possible for a group of

genes to have a common pattern of expression without having exactly the same rank

profile. Ben-Dor et al. (2002) do suggest a variant of their approach in which each

value in the submatrix corresponding to the bicluster is exempt from the ordering

condition with some probability π. Whilst this allows for slight variations in rank

profile, it will of course broaden the definition further, perhaps producing biclusters

that are too heterogeneous. Ben-Dor et al. (2002) propose a heuristic algorithm for

discovering one order preserving submatrix at a time, which finds a solution for all

possible values for s, the number of samples in the bicluster, and selects the most

significant of these solutions. For a given value of s, the algorithm iteratively builds

sample permutations, choosing the best l permutations in each iteration, until the

permutations are of length s, when the best is selected and the probabilities of

each gene belonging to the bicluster are calculated. The biclusters retrieved by
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the algorithm may overlap, producing the clustering structure illustrated in Figure

3.7(e).

The biclustering method of Cheng and Church (2000) identifies biclusters of

genes that have similar or opposite patterns of expression. The biclustered profiles

may include near-zero expression levels as shown in Figure 3.4(e) for a bicluster of

genes with similar expression pattern only. Cheng and Church (2000) propose a

node-deletion algorithm in which a set number of biclusters are found one at a time;

after each bicluster is identified, the data corresponding to the bicluster are replaced

by random numbers generated uniformly over the range of the full data set. This

allows biclusters to overlap, giving the structure illustrated in Figure 3.7(e). The

algorithm searches for biclusters of the form

Zij = δik(µk + αik + βjk)

where Zij is the expression level or random number corresponding to gene i and sam-

ple j in bicluster k; µk, αik, and βjk are mean, gene and sample effects respectively,

and δik ∈ {−1, 1} is the sign of the ith profile. Since this model will fit biclusters

of genes with near constant expression profiles, the method identifies several trivial

biclusters before discovering biclusters of unusual expression patterns.

This issue is addressed in the FLOC algorithm proposed by Yang et al. (2003),

which is based on the work of Cheng and Church (2000). In the FLOC algorithm,

a lower bound may be set for the variance of biclustered gene expression profiles,

to reject trivial biclusters. Moreover, FLOC estimates a set number of biclusters

simultaneously, avoiding the problem of random interference caused by masking

discovered biclusters in the algorithm of Cheng and Church (2000). FLOC is a

probabilistic move-based algorithm, which performs one move per gene and sample

in each iteration. The moves in or out of biclusters are made sequentially in a

random order, with probabilities determined by the “gain” of each move. Gain

is measured in terms of the relative reduction in the mean of the sum of squared

residuals over the bicluster and the relative increase in the size of the bicluster.

Unlike the algorithm of Cheng and Church (2000), there is no step in the algorithm

to include anti-regulated genes, so the δik are all 1, giving biclusters of the form

illustrated in Figure 3.4(e).

Ambler (2003) propose the following clustering model for the gene expression
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levels Yij

Yij =
K

∑

k=1

ρikκjkµk + ǫij

in which ρik ∈ {0, 1} indicates whether gene i is in bicluster k, such that
∑

i ρik > 0;

κj ∈ {0, 1} indicates whether sample j is in bicluster k such that
∑

j κjk > 0, and µk

is the effect of bicluster k. In this model each bicluster represents a cluster of genes

that are expressed at a common level over the biclustered samples, as illustrated in

Figure 3.4(a). Genes and samples may belong to more than one bicluster or not

belong to any bicluster, giving the structure illustrated in Figure 3.7(e). Ambler

(2003) estimate this model using a Bayesian MCMC approach. A drawback of

this method is that it can be hard to summarise the posterior distributions of the

parameters in a meaningful way. Whilst the number of biclusters and the associated

bicluster means can usually be identified, it is difficult to associate genes and samples

with these biclusters.

Murali and Kasif (2003) define the“interesting” states of expression for each gene

as the subintervals of its range of expression levels, within the experiment, that con-

tain more observations than would be expected by chance (assuming a uniform

distribution over the range). They then identify biclusters in which the genes are

conserved in one of their interesting states over the samples. Thus, the biclustered

genes are not necessarily expressed at a similar level, but jointly respond as illus-

trated in Figure 3.4(d). All possible subintervals are considered as potential states,

so this method is not as restrictive as methods that discretise the data. However it

is possible for a state to be statistically significant without being biologically signif-

icant, so prior gene selection may be required to remove uninformative genes. The

biclusters are discovered using a simple algorithm, that looks for conserved genes

over seed samples and randomly selected “discriminating subsets” of the samples,

to form the basis of candidate biclusters. The algorithm returns the best bicluster

out of these candidates, then the samples from this bicluster are removed from the

data set and the process is repeated. Therefore genes may belong to more than one

bicluster, but samples may not, as illustrated in Figure 3.7(d).

Plaid model clustering (Lazzeroni and Owen, 2002) models the usual expression

level for each gene and sample, then models the additional effects of biclusters which

show an unusual pattern of expression. For the expression level Yij of the ith gene
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and the jth sample, the plaid model is given by

Yij = µ0 + αi0 + βj0 +
K

∑

k=1

(µk + αik + βjk)ρikκjk + ǫij

where µ0, αi0 and βj0 are the “usual” or background mean, gene and sample effects;

the µk, αik and βjk are the additional mean, gene and sample effects for bicluster

k, and the ρik ∈ {0, 1} and κjk ∈ {0, 1} indicate respectively whether the ith gene

or jth sample belongs to bicluster k, such
∑

i ρik > 0 and
∑

j κjk > 0. Thus states

of expression are identified as being unusual or interesting in the context of the

full data set, rather than within each gene’s expression profile, as in the method of

Murali and Kasif (2003). The biclustered genes have similar patterns of expression,

as illustrated in Figure 3.4(f). Lazzeroni and Owen (2002) use an alternating least

squares algorithm to estimate one bicluster at a time. The actual expression levels

are used, so information is not lost through pre-processing. The number of biclus-

ters is determined automatically and biclusters may overlap, producing the type of

structure illustrated in Figure 3.7(e).

3.4 Selection of the Plaid Model for Further Study

Despite the number of clustering methods developed for microarray analysis, few

are able to address all of the issues discussed at the beginning of this chapter.

The one-way clustering methods address a range of issues collectively, but in-

dividually they tend to address single issues. Percolation clustering (Šášik et al.,

2001) introduces flexible cluster membership, allowing membership of more than one

cluster or none at all, but clustering is based on the full expression profile. COSA

(Friedman and Meulman, 2004) and context-specific Bayesian clustering (Barash

and Friedman, 2002) allow clusters to be based on subsets of the attributes, but

the clustering is exhaustive. Methods developed for time series data are obviously

focused on this particular issue, but the method of Luan and Li (2003) can also

accommodate genes that don’t belong to any cluster.

In general, the two-way clustering methods address the issue of a limited number

of attributes being relevant for clustering. The methods of Tang et al. (2001) and

McLachlan et al. (2002) use gene clusters as the attributes for clustering the samples,
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but their methods assume that the selected genes are useful for clustering all of the

samples. Local dependencies can be identified through iterative two-way clustering,

as in the methods of Getz et al. (2000) and Pollard and van der Laan (2002), but

there is a danger that such methods can be too aggressive. In co-clustering methods,

there is an overall dependence between the clustering of one dimension and the other.

A cluster of genes can then be interpreted as a group of genes with similar expression

levels in each of the sample clusters. The Double Conjugated Clustering method of

Busygin et al. (2002), identifies conjugate pairs of gene and sample clusters, in which

the expression levels are most homogeneous and also allows for genes or samples that

don’t belong to any cluster. However neither of the co-clustering methods reviewed

here allow clusters to overlap.

The concept of a bicluster offers great potential for accommodating the features

of microarray data, since biclusters can represent local dependencies between genes

and samples. However not all biclustering methods realise the full potential of

this concept. Some methods place restrictions on the bicluster membership, for

example, Segal et al. (2001) assume a latent clustering of the genes and samples on

which the biclusters must be based and the method of Sheng et al. (2003) does not

allow biclusters to overlap. The latent models of Segal et al. (2003) and MacKay

and Miskin (2001) only include biclusters as a special case, usually producing gene

clusters based on all the samples. Other methods have a tendency to include non-

informative genes in the biclusters, such as the method of Cheng and Church (2000)

and possibly the method of Murali and Kasif (2003). In some cases, there are

drawbacks in the way a bicluster is defined, for example Ben-Dor et al. (2002) require

biclusters of genes to have the same (or approximately the same) rank profile across

the biclustered samples, which is not a necessary or sufficient basis for identifying

homogeneous profiles, whereas the use of SAMBA with an unsigned graph (Tanay

et al., 2002) may allow too much flexibility to identify meaningful groups of genes.

The methods of Yang et al. (2003), Ambler (2003) and Lazzeroni and Owen

(2002) all allow biclusters to overlap. The practical utility of allowing biclusters

to overlap was demonstrated by Tanay et al. (2002), who presented an example in

which tissue samples in a certain class were uniquely characterised by the overlap

between two biclusters. Therefore it is in an important feature to allow both genes

and samples to belong to more than one bicluster. The methods of Yang et al.

(2003), Ambler (2003) and Lazzeroni and Owen (2002) also have the advantage of
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using the actual gene expression levels for analysis, rather than requiring the data

to be discretised as in Tanay et al. (2002).

The FLOC algorithm (Yang et al., 2003) has the disadvantage that it requires

the number of biclusters to be specified. In addition, the biclusters found using

the FLOC algorithm include any samples in which the biclustered genes are co-

regulated, even if the genes are not expressed at an unusual level. The plaid model,

on the other hand, models the background expression level of genes and samples

and seeks biclusters that represent a substantial departure from this model. The

background expression levels are modelled as part of the clustering process, which

is preferable to removing global effects prior to clustering, since this can add noise

to the data.

The plaid model may also be preferred over the Bayesian clustering model pro-

posed by Ambler (2003), as it seeks biclusters of genes with a similar expression

pattern over the samples (Figure 3.7(c)), rather than a common expression level

(Figure 3.7(a)). Lazzeroni and Owen (2002) illustrate the practical utility of allow-

ing gene and sample effects in their plaid model analysis of yeast gene expression

data. The first bicluster covers samples taken from two yeast strains during sporu-

lation and includes many genes involved in the cell cycle. The sample effects range

from 0.72 to 1.41 and the top 12 gene effects range from 1.51 to 3.34. This shows

that genes with a common function may jointly respond under certain conditions,

but the gene expression levels are not necessarily the same for all the genes across

all the samples. Allowing gene and sample effects enables such biclusters to be

discovered.

The features of the plaid model make it a particularly attractive method for

clustering microarray data. This method addresses all of the issues discussed at the

beginning of this chapter. As a biclustering method, each gene cluster is associated

with a sample cluster over which the genes are co-regulated, allowing for limited

co-regulation. The biclusters represent unusual patterns of expression, so that un-

interesting expression profiles are not clustered. Genes involved in more than one

active biological process can be accommodated through overlapping biclusters.

The plaid model also has the potential to be adapted to take into account further

structural information, by extending or modifying the underlying model. Examples

of such additional structure are given by the data sets introduced in Chapter 1: the

grouping structure of the Infectious Disease data set and the three-way structure of
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the TB Susceptibility data set.

The problem of estimating a set of biclusters is acknowledged to be NP-hard

(Cheng and Church, 2000; Yang et al., 2003; Lazzeroni and Owen, 2002), so it is

unlikely that an algorithm will find the globally optimal solution, but should return

a “good” local optimum. The algorithm proposed by Lazzeroni and Owen (2002)

uses alternating least squares which is a standard approach to model estimation

with a clearly defined optimisation criterion. As such, their approach seems less ad

hoc than some of the other algorithms discussed in this chapter, particularly with

regard to two-way clustering and biclustering methods.

Since the plaid model addresses all of the issues discussed at the beginning of this

chapter and compares favourably with other methods for clustering gene expression

data, the remainder of this thesis will focus on this technique.

3.4.1 Summary

Out of the clustering methods reviewed in this chapter, the plaid model has been

selected for further study. Plaid model clustering does not suffer from the drawbacks

of conventional clustering techniques that were discussed at the beginning of this

chapter. In addition the plaid model has potential for further extension, which

may be particularly useful for three-way gene expression data sets such as the TB

Susceptibility data set introduced in Chapter 1.

The alternating least squares algorithm proposed by Lazzeroni and Owen (2002)

for fitting the plaid model seems a reasonable approach. However, this algorithm is

considered in more detail in the next chapter and some drawbacks of the method

are identified.

The remaining chapters of this thesis are organised as follows. The next chapter

considers the problem of estimating the plaid model, first examining the original

algorithm as discussed above, then reviewing algorithms of related methods, leading

to the proposal of an alternative approach. Chapter 5 compares the performance

of the alternative algorithm to the original algorithm and the proposed algorithm is

adopted as a result. Some refinements of the algorithm are introduced in Chapter

6, then some extensions of plaid model clustering are proposed and investigated in

Chapters 7 and 8.
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